Quantum Randomness Expansion : Upper and Lower
نویسندگان
چکیده
A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. We show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date. Finally, we demonstrate, for all positive integers k, a protocol involving 2k non-signaling black-box quantum devices that achieves an amount of expansion that is a tower of exponentials of height k. This hints at the intriguing possibility of infinite randomness expansion. Thesis Supervisor: Dana Moshkovitz Title: Assistant Professor
منابع مشابه
Robust Randomness Amplifiers: Upper and Lower Bounds
A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are nonsignaling). We call protocols a...
متن کاملSecurity and Composability of Randomness Expansion from Bell Inequalities
The nonlocal behavior of quantum mechanics can be used to generate guaranteed fresh randomness from an untrusted device that consists of two nonsignalling components; since the generation process requires some initial fresh randomness to act as a catalyst, one also speaks of randomness expansion. R. Colbeck and A. Kent [J. Phys. A 44, 095305 (2011)] proposed the first method for generating rand...
متن کاملUpper bound and numerical analysis of cyclic expansion extrusion (CEE) process
Deformation of the material during cyclic expansion extrusion (CEE) is investigated using upper-bound theorem. The analytical approximation of forming loads agrees very well with the FEM results for different amounts of chamber diameter, friction factor and also for lower die angles. However, the difference between analytical and numerical solution increases at higher die angles which are expla...
متن کاملUniversal security for randomness expansion
We show that any spatially separated multi-part quantum device demonstrating nonlocality can be used in an untrusted-device protocol for randomness expansion with unconditional quantum security. A consequence is that the noise tolerance for secure randomness expansion only needs to be small enough that it rules out deterministic behavior of the device. This greatly reduces the requirement on im...
متن کاملGraphical Methods in Device-Independent Quantum Cryptography
We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of new proofs, and enable automated proof verification. As an example of our framework, we reprove a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014